- 重要日期
- 会议日期:2024年8月10-12日
- 摘要截稿日期:延期至 Jul. 9, 2024
- 论文出版:收到最终稿后7-10天
- 联系我们
- 邮箱:huiyi123net_Aug@126.com
- 手机:0086-18616502321
- QQ:2934920393
代数数论
在数学中,代数数论是数论的一支,其中我们将“数”的概念延伸,以解决具体的数论问题。我们在代数数论中考虑代数数,这类数是有理系数多项式的根。与此相关的概念是数域,这是有理数域的有限扩张。在此框架下能推广整数为代数整数,并研究一个数域里的代数整数。代数整数在加法、减法与乘法下构成一个环,但整数的许多性质并不能推广到一般数域里的代数整数上,其中一个例子是素约数分解的唯一性(又称算术基本定理),这是十九世纪数学家试图证明费马大定理时遇到的主要阻碍,然而代数数论的应用不仅止于此。数学中一些较深入的理论有助于让我们了解代数数与代数整数的性质——包括伽罗瓦理论、伽罗瓦上同调、类域论、表示理论与L-函数的相关理论等等。数论中的许多问题可借由“模 p”(其中 p 为素数)来研究。这套技术导向p进数的建构,而p进数是局部域的例子;局部域的研究运用了一些研究数域时的相同方法,但是通常更容易处理。一般数域上的陈述常与各个局部域上的相应陈述有关,例如哈瑟原理:“一个有理系数二次方程在有理数域上有解,当且仅当它在实数上及在每个素数 p 之 p进数域上有解”。这类结果往往被称作局部-整体原理,其中“局部”意指局部域,而“整体”意指数域。
2024第五届数学与信息科学国际会议(ICMIF2024)涵盖主题包括但不仅限于代数数论等领域,会议组委会诚邀全球相关领域的学者、专家参加此次国际会议,就相关热点问题进行探讨、交流,共同促进科学研究的进步与发展。
会议征稿
2024第五届数学与信息科学国际会议(ICMIF2024)诚邀学者、专家提交他们的研究摘要、论文并参会交流。
ICMIF2024 的摘要与全文投稿通道已开放,欢迎您提交摘要和全文:
摘要出版
会议接受英文摘要投稿,摘要录用后,将以会议摘要集的形式由 Science Publishing Group (SciencePG) 出版。
ISBN: 979-8-88599-090-5
全文出版
论文全文被录用后,将根据主题在线出版在 Science Publishing Group (SciencePG) 的相关期刊上。合作期刊可被部分国外的检索机构检索,如WorldCat, CrossRef, Electronic Journals Library, Zeitschriftendatenbank, EZB, ResearchBib, Polish Scholarly Bibliography, Wissenschaftszentrum Berlin等。